Synthesise AI
  • Getting Started
    • 📘Introduction
    • 🤝Supporters
    • 🔎Key Features
    • 💳Products
  • Platform Infrastructure
    • 🏗️Architecture
    • 🗺️Roadmap
  • Core Modules
    • 🧠AI Agents
    • 🤖Chatbots
    • ⚙️Automations
  • $SYNAI INFORMATION
    • 🪙Tokenomics
    • 🎁Holder Benefits
Powered by GitBook
On this page
  1. Getting Started

Key Features

1. Intelligent Product Frameworks

1.1 Unique Value Zone (UVZ) Engine

Purpose Automatically identifies the “intersection of knowledge and demand” by analyzing user expertise and mapping it against audience pain points using machine learning.

How it works

  • Accepts a user input string describing skills, domain, or niche

  • Uses cosine similarity across a vectorized corpus of monetizable problems

  • Outputs a ranked UVZ score with tags and prompts

Rust Example: UVZ Scoring Engine

pub fn cosine_similarity(a: &[f32], b: &[f32]) -> f32 {
    let dot = a.iter().zip(b).map(|(x, y)| x * y).sum::<f32>();
    let norm_a = a.iter().map(|x| x * x).sum::<f32>().sqrt();
    let norm_b = b.iter().map(|y| y * y).sum::<f32>().sqrt();
    dot / (norm_a * norm_b)
}

1.2 Concept Validation Protocol

Purpose Determines product-market fit by querying clusters of LLMs and using heuristics to simulate “early audience reactions.”

Components

  • Prompt multiplexing

  • GPT-ensemble confidence scoring

  • Competitive saturation indexing

Workflow

  • Feed idea into AI mesh

  • Aggregate scores, identify overlap with existing solutions

  • Deliver heatmap and go/no-go signal


1.3 Product Charter Generator

Purpose Transforms a validated idea into a blueprint with full chapters, milestones, and pricing logic.

Submodules

  • Deliverable Tree Engine

  • Persona & Journey Map

  • Pricing Engine (integrated with Monetise)

Rust Struct

struct ProductCharter {
    title: String,
    modules: Vec<String>,
    pricing_model: String,
}

impl ProductCharter {
    fn render_summary(&self) -> String {
        format!("{} with {} modules, priced at {}", 
            self.title, 
            self.modules.len(), 
            self.pricing_model)
    }
}

2. Smart Assistant Dashboard

2.1 Creation History + Modular Resume

  • Timestamped logs for each flow

  • One-click resumption of archived builds

  • Clone + mutate workflows to speed up ideation

Rust Struct

struct ProjectLog {
    name: String,
    created_at: String,
    status: String,
}

2.2 Visual Feedback Analytics

  • Real-time graphs of engagement, user friction, flow completions

  • Uses Rust-based backend with frontend D3.js integration

  • Interactive anomaly detection and LLM feedback injection

Metric Capture Example

struct Feedback {
    engagement_rate: f32,
    dropoff_point: usize,
    score: u8,
}

3. Chatbot Engine (Autonomous AI Assistants)

3.1 Deployable, Context-Aware Product Bots

  • Auto-trained on user’s product charter and value zone

  • Works on landing pages, checkout flows, dashboards

  • Supports structured (FAQ) and unstructured (follow-up) queries

Rust Example

struct ChatBot {
    context: Vec<String>,
}

impl ChatBot {
    fn reply(&self, input: &str) -> String {
        format!("Based on context, responding to: {}", input)
    }
}

4. Pre-trained Modular AI Agents

4.1 Agent Categories

  • SEOAgent – Metadata, semantic keywords, clustering

  • LaunchCopyAgent – CTA variants, emotional tones, urgency sliders

  • InstructionalDesigner – Course breakdowns, quizzes, and follow-ups

Execution Snippet

trait Agent {
    fn act(&self, input: &str) -> String;
}

struct SEOAgent;

impl Agent for SEOAgent {
    fn act(&self, input: &str) -> String {
        format!("Generating tags for '{}'", input)
    }
}

5. Visual Automation Engine

5.1 Event-Driven Workflow Composer

  • Drag-and-drop builder (WASM-rendered frontend)

  • Events include:

    • User purchase

    • Abandonment

    • Form submit

    • Page engagement

  • Actions include:

    • Email / SMS / Webhook

    • Smart delay with optimization window

    • Token issuance (NFT / access pass)

Rust Enum

enum AutomationEvent {
    Purchased(String),
    AbandonedCart,
    CompletedQuiz,
}

Handler Function

fn automation_trigger(event: AutomationEvent) {
    match event {
        AutomationEvent::Purchased(p) => println!("Thanks for purchasing {}", p),
        AutomationEvent::AbandonedCart => println!("Reminder sent."),
        _ => println!("Unhandled event"),
    }
}
PreviousSupportersNextProducts

Last updated 13 days ago

🔎